A useful EGFR-TK ligand for tumor diagnosis with SPECT: development of radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3′-iodophenoxy)quinazoline
نویسندگان
چکیده
OBJECTIVE Epidermal growth factor receptor tyrosine kinase (EGFR-TK) represents an attractive target for tumor diagnosis agents. Previously, radioiodinated 4-(3-iodophenoxy)-6,7-diethoxyquinazoline (PHY) was reported to possess good characteristics as a tumor imaging agent. We have explored the feasibility of developing tumor diagnosis ligands superior to radioiodinated PHY. METHODS New phenoxyquinazoline derivatives were designed with various side chains introduced to the 6th position of PHY. The IC50 values of the new derivatives to interrupt EGFR-TK phosphorylation were evaluated and compared to well-known EGFR-TK inhibitors. Tumor uptake studies of the new (125)I-labeled derivatives were conducted with A431 tumor-bearing mice. Selectivity and binding characteristics were analyzed by in vitro blocking studies and a binding assay. Furthermore, SPECT/CT scans were performed using A431 tumor-bearing mice. RESULTS Six quinazoline derivatives were designed and synthesized, and among these, 6a-d were found to have relatively high EGFR-TK inhibitory potency. In tumor uptake studies, [(125)I]6a ([(125)I]PYK) was found to have the highest tumor uptake and longest retention in tumors. In contrast, [(125)I]PYK was rapidly cleared from peripheral tissues, resulting in a high tumor-to-tissue ratio 24 h after injection. Moreover, the EGFR-TK selectivity of [(125)I]PYK was confirmed by pretreatment experiments with specific EGFR-TK inhibitors. Furthermore, [(125)I]PYK provided clear SPECT images of tumors. CONCLUSIONS Radioiodinated PYK, one of the newly synthesized quinazoline derivatives, was found to be a desirable ligand for EGFR-TK SPECT imaging. [(125)I]PYK showed high tumor accumulation and selective EGFR-TK binding and also succeeded in delivering high contrast imaging of tumors. These favorable characteristics of [(125)I]PYK suggest that the (123)I-labeled counterpart, [(123)I]PYK, would have great potential for diagnostic SPECT tumor imaging.
منابع مشابه
Assessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملAssessment of epidermal growth factor receptor status in glioblastomas
OBJECTIVES Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([(125)I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the e...
متن کاملMolecular imaging of active mutant L858R EGF receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT.
The importance of the EGF receptor (EGFR) signaling pathway in the development and progression of nonsmall cell lung carcinomas (NSCLC) is widely recognized. Gene sequencing studies revealed that a majority of tumors responding to EGFR kinase inhibitors harbor activating mutations in the EGFR kinase domain. This underscores the need for novel biomarkers and diagnostic imaging approaches to iden...
متن کاملPii: S0969-8051(01)00200-1
As PET candidate tracers for EGFr-TK, five 4-(anilino)quinazoline derivatives, each fluorinated in the aniline moiety, were prepared. Each was tested in vitro for inhibition of EGFr autophosphorylation in A431 cell line. The leading compounds were then radiolabeled with F and cell binding experiments, biodistribution and PET studies in A431 tumor-bearing mice were performed. Metabolic studies w...
متن کاملSignaling-inactive epidermal growth factor receptor/ligand complexes in intact carcinoma cells by quinazoline tyrosine kinase inhibitors.
Several inhibitors of EGF receptor (EGFR) tyrosine kinase activity have been developed that compete with ATP at its binding site such as the quinazolines PD 153035 and ZD 1839 or the 4,5-dianilino-phthalimides DAPH1 and DAPH2. When tested on human A431 cells, the quinazolines completely blocked EGF-induced receptor phosphorylation at 100 nM, whereas it was inhibited by DAPH1 and DAPH2 by only 2...
متن کامل